XSEDE: Big Data and Machine Learning

By |

OVERVIEW

XSEDE, along with the Pittsburgh Supercomputing Center, is pleased to present a two day Big Data and Machine Learning workshop.

This workshop will focus on topics such as Hadoop and Spark and will be presented using the Wide Area Classroom (WAC) training platform.

 

Please see this site for more information

 

Due to COVID-19, this workshop will be remote, using Zoom.

Register by going to: https://portal.xsede.org/xup/course-calendar or If you do not currently have an XSEDE Portal account, you will need to create one:

https://portal.xsede.org/my-xsede?p_p_id=58&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&_58_struts_action=%2Flogin%2Fcreate_account

Should you have any problems with that process, please contact help@xsede.org and they will provide assistance.

 

XSEDE: Big Data and Machine Learning

By |

OVERVIEW

XSEDE, along with the Pittsburgh Supercomputing Center, is pleased to present a two day Big Data and Machine Learning workshop.

This workshop will focus on topics such as Hadoop and Spark and will be presented using the Wide Area Classroom (WAC) training platform.

Due to COVID-19, this workshop will be remote, using Zoom.

Register by going to: https://portal.xsede.org/course-calendar or https://portal.xsede.org/course-calendar/-/training-user/class/2433/session/4094

 

If you do not currently have an XSEDE Portal account, you will need to create one:

https://portal.xsede.org/my-xsede?p_p_id=58&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&_58_struts_action=%2Flogin%2Fcreate_account

Should you have any problems with that process, please contact help@xsede.org and they will provide assistance.

 

XSEDE: Python Tools for Data Science

By |

OVERVIEW

Python has become a very popular programming language and software ecosystem for work in Data Science, integrating support for data access, data processing, modeling, machine learning, and visualization. In this webinar, we will describe some of the key Python packages that have been developed to support that work, and highlight some of their capabilities. This webinar will also serve as an introduction and overview of topics addressed in two Cornell Virtual Workshop tutorials, available at https://cvw.cac.cornell.edu/pydatasci1 and https://cvw.cac.cornell.edu/pydatasci2 .

See https://portal.xsede.org/course-calendar/-/training-user/class/2467/session/4161 for more information and registration

 

Register via the XSEDE Portal:

If you do not currently have an XSEDE Portal account, you will need to create one:

https://portal.xsede.org/my-xsede?p_p_id=58&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&_58_struts_action=%2Flogin%2Fcreate_account

Should you have any problems with that process, please contact help@xsede.org and they will provide assistance.

 

Geostatistics – III

By |

Many environmental variables such as temperature, rainfall, air pollutants, and soil nutrients are measured at sampled point locations. We often need to estimate these variables at one of more unsampled locations. Geostatistics provide tools and techniques to carry out this task.

In a series of three workshops, we will cover the basics of Geostatistics. In this third workshop, we will combine the material we covered in the first two workshops and develop the geostatistical modeling approach. This is mainly a lecture style workshop, but will include an example in R. The material will also help you understand the basics of Gaussian Process Regression, a commonly used modeling technique in Machine Learning.

Geostatistics – II

By |

Many environmental variables such as temperature, rainfall, air pollutants, and soil nutrients are measured at sampled point locations. We often need to estimate these variables at one of more unsampled locations. Geostatistics provide tools and techniques to carry out this task.

In a series of three workshops, we are covering the basics of Geostatistics. In this second workshop, we will focus on covariance and variogram, and their estimation in the context of geostatistical modeling. This is mainly a lecture style workshop, but we will also execute some examples in R. The material will also help you understand the basics of Gaussian Process Regression, a commonly used modeling technique in Machine Learning.

Geostatistics – I

By |

Many environmental variables such as temperature, rainfall, air pollutants, and soil nutrients are measured at sparsely sampled point locations. We often need to estimate these variables at one of more unsampled locations. Geostatistics provide tools and techniques to carry out this task.

In a series of three workshops, we will cover the basics of Geostatistics. In this first workshop we will understand the idea of stationary random fields, positive definite functions, and the fundamental building blocks of Gaussian random fields. This is mainly a lecture style workshop, but we will also execute some examples in R. The material will also help you understand the foundations of Gaussian Process Regression, a commonly used technique in Machine Learning and AI.

XSEDE HPC HPC Summer Boot Camp

By |

OVERVIEW

XSEDE, along with the Pittsburgh Supercomputing Center is pleased to present a Hybrid Computing workshop.

This 4 day event will include MPI, OpenMP, GPU programming using OpenACC and accelerators.

This workshop will be remote to desktop only due to the COVID-19 pandemic.  When the registration has filled, there will be no more students added due to our current limits.

The schedule can be found here:  https://www.psc.edu/resources/training/xsede-hpc-workshop-june-8-11-2021-summer-boot-camp/

 

Register via the XSEDE Portal:

https://portal.xsede.org/course-calendar/-/training-user/class/2338/session/4002

If you do not currently have an XSEDE Portal account, you will need to create one:

https://portal.xsede.org/my-xsede?p_p_id=58&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&_58_struts_action=%2Flogin%2Fcreate_account

Should you have any problems with that process, please contact help@xsede.org and they will provide assistance.

Questions

Please address any questions to Tom Maiden at tmaiden@psc.edu.

Advanced ML topics: Algorithms, writing ML code, comparing implementations

By |

OVERVIEW

This workshop is designed as a follow-up to the basic introduction to machine learning earlier in this series. We will cover several examples in Python and compare different implementations. We will also look at advanced topics in machine learning, such as GPU optimization, parallel processing, and deep learning. A basic understanding of Python is required.

INSTRUCTORS

Meghan Richey
Machine Learning Specialist
Information and Technology Services – Advanced Research Computing – Technology Services

Meghan Richey is a machine learning specialist in the Advanced Research Computing- Technology Services department at the University of Michigan. She consults on several faculty and student machine learning applications and research studies, specializing in natural language processing and convolutional neural networks. Before her position at the university, Ms. Richey worked for a defense contractor as a software engineer to design and implement software solutions for DoD-funded artificial intelligence efforts.

A Zoom link will be provided to the participants the day before the class. Registration is required.

Instructor will be available at the Zoom link, to be provided, from 9-10 AM for computer setup assistance.

Please note, this session will be recorded.  

Register here

If you have questions about this workshop, please send an email to the instructor at richeym@umich.edu

XSEDE HPC Workshop: GPU Programming Using OpenAcc

By |

OVERVIEW

XSEDE, along with the Pittsburgh Supercomputing Center is pleased to present an OpenACC GPU programming workshop.

OpenACC is the accepted standard using compiler directives to allow quick development of GPU capable codes using standard languages and compilers. It has been used with great success to accelerate real applications within very short development periods. This workshop assumes knowledge of either C or Fortran programming. It will have a hands-on component using the Bridges-2 computing platform at the Pittsburgh Supercomputing Center.

Due to Covid-19, this workshop will delivered via zoom.

More information can be found at https://www.psc.edu/resources/training/xsede-hpc-workshop-march-2-2021-gpu-programming-using-openacc-2/

Deadline for registration is  2 PM February 26

Registration with XSEDE

Advanced ML topics: Algorithms, writing ML code, comparing implementations

By |

OVERVIEW

This workshop is designed as a follow-up to the basic introduction to machine learning earlier in this series. We will cover several examples in Python and compare different implementations. We will also look at advanced topics in machine learning, such as GPU optimization, parallel processing, and deep learning. A basic understanding of Python is required.

INSTRUCTORS

Meghan Richey
Machine Learning Specialist
Information and Technology Services – Advanced Research Computing – Technology Services

Meghan Richey is a machine learning specialist in the Advanced Research Computing- Technology Services department at the University of Michigan. She consults on several faculty and student machine learning applications and research studies, specializing in natural language processing and convolutional neural networks. Before her position at the university, Ms. Richey worked for a defense contractor as a software engineer to design and implement software solutions for DoD-funded artificial intelligence efforts.

A Zoom link will be provided to the participants the day before the class. Registration is required.

Instructor will be available at the Zoom link, to be provided, from 9-10 AM for computer setup assistance.

Please note, this session will be recorded.  

Register here

If you have questions about this workshop, please send an email to the instructor at richeym@umich.edu